Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

C
a
r
b
o
n
f
i
n
a
n
c
e
f
o
r
f
o
r
e
s
t
r
e
s
i
l
i
e
n
c
e
i
n
C
a
l
i
f
o
r
n
i
a

Restoring a resilient forest structure in California’s American River watershed in the Sierra Nevada mountains can generate up to $6,100 per acre in carbon revenue from increased forest carbon and market-ready biomass utilization pathways, potentially fully funding forest management.

Employing a dynamic performance benchmark (DPB) framework, this study models the impacts of restoring resilience to high-risk forests via forest thinning followed by prescribed fire. These practices show an initial carbon cost, but ultimately reduce carbon emissions from wildfire and increase carbon storage compared to a no-treatment counterfactual scenario by 35 tCO2e per acre on average, with market-ready biomass utilization pathways adding another 6–23 tCO2e average benefit per acre. Treatments enhance carbon stability by shifting carbon storage from dense, overcrowded small trees to more dispersed, fire-resilient large trees and reduces fire severity (flame length) by 78% five years post-treatment. Compared to pretreatment levels, treatment decreases the number of trees on the landscape by 74% while increasing carbon storage by 6% at the end of the 25-year simulation. To reduce investor risk into nature-based solutions focused on increasing carbon stability in fire-adapted forests and generate carbon revenue from fuel treatments, accurate predictive tools are needed. To maximize certainty of carbon benefits, landscape level treatments, DPBs, and ex-post carbon crediting will be critical. This study shows that carbon revenue from traditional markets or novel carbon contribution programs can help close the funding gap for forest restoration in California while underscoring the need for innovative conservation finance mechanisms to support ecosystem resilience and climate mitigation goals.

Partners

Funding Sources

  • National Forest Foundation
  • USFS Southwest Pacific Research Station Agreement #21-JV-11272131-043 Expanding Forest Management and Promoting Ecosystem Services through access to Environmental Markets: Modeling Carbon Markets

Publication: Frontiers in Forests and Global Change

Authors: Micah Elias, Ethan Yackulic, Katharyn Duffy, Phil Saksa, Daniel L. Sanchez, Nicholas Pevzner, Spencer Plumb, Jillian Dyszynski, Carina Bracer